Aviation Technology

Aviation Technology

تکنولوژی هوایی
Aviation Technology

Aviation Technology

تکنولوژی هوایی

شرحی مختصر از پس سوز

برای حرکت یک هواپیما به جلو یک نیروی جلوبرنده بنام "تراست" که من بارها ازاین نام استفاده کردم باید توسط یک پیشران تولید شود. بیشتر هواپیماهای جنگنده ی مدرن از یک پس سوز در موتور خود(چه توربوجت و چه توربوفن با ضریب گذرگاهی پایین ) استفاده میکنند. اما در این پست میخواهم که مسائل اولیه ی مربوط به توربوجتهای پس سوز دار را بنویسم.


طبق قانون طبیعت، هواپیماهای جنگنده برای پرواز در سرعتی بالاتر از سرعت صوت (supersonic)، مجبورند به یک نیروی drag یا همان نیروی پسا که در جهت مخالف حرکت است، غلبه کنند. در طول کل پرواز از ابتدا تا انتها پای این نیرو در کار است ولی در سرعت صوت این نیرو تغییرهایی دارد. در سرعت صوت این نیرو با شتابی افزایش پیدا کرده و مانع از افزایش بیشتر سرعت هواپیما میشود. پس برای غلبه بر این نیرو به نیروی تراست بیشتری احتیاج است. یک راه ساده برای بالابردن تراست به میزان قابل توجه، اضافه کردن یک پس سوز به هسته ی توربوجت است. در یک توربوجت اساسا مقداری از انرژی گازهای محترق و خروجی برای چرخاندن توربین یا توربینها مورد استفاده قرار میگیرد. در واقع پس سوز برای بالا بردن نیروی تراست تولیدی، از طریق تزریق سوخت به این گازهای محترق استفاده میکند. در شکل بنیادی توربوجت پس سوزدار شما متوجه خواهید شد که بخش نازل کمی طویل شده و حلقه هایی از نگه دارنده ی شعله با رنگ نارنجی را در کنار نازل خواهید دید. در پس سوزها وقتی بخش پس سوز روشن است، سوخت اضافی از میان حلقه ها به گازهای محترق اگزوز تزریق میشود. سوخت میسوزد و با افزایش حرارت و انبساط، تراست بیشتری را تولید مینماید ولی این سوخت با بازدهی که سوخت در محفظه ی احتراق میسوزد، نمیسوزد. شما تراست بیشتری با یک پس سوز خواهید داشت ولی مقدار خیلی بیشتری سوخت خواهید سوزاند. نکته ی دیگر اینکه هنگامیکه پس سوز خاموش است کارایی موتور، به همان میزان کارایی ثابت توربوجت است. در تصویر زیر نمونه ی یک پس سوز دست ساز را میبینید که سوخت پاش و حلقه ی نگه دارنده ی شعله به وضوح دیده میشود. 


گازهایی که به قسمت پس سوز میرسند هنوز مقدار زیادی اکسیژن مصرف نشده دارند. بطور میانگین چیزی در حدود 25 درصد از اکسیژن هوای مورد استفاده ی موتور، در محفظه ی احتراق به مصرف میرسد. پس اگر به مقدار اکسیژن باقیمانده (تقریبا 75 درصد) مقداری سوخت اضافه شود توانایی احتراق آنرا را دارد که نتیجه ی آن بالاتر رفتن حرارت و افزایش سرعت گازهای اگزوز و در نهایت افزایش تراست خواهد بود. بیشتر پس سوزها در حدود 50 درصد نیروی تراست را، افزایش میدهند. قابل توجه است، پس سوز فقط در مدت زمان محدودی قابل استفاده است چون هیچ فلزی توان تحمل دماهای بسیار بالا را ندارد. به همین خاطر فقط در زمان برخاستن هواپیما از زمین یا در هنگام گذر از دیوار صوتی یا در هنگام صعود به بالا با زاویه ی زیاد و یا سایر حالت های ویژه مورد استفاده قرار میگیرد. البته میتوان این مدت محدود را افزایش داد و حتی آنرا دائمی کرد. برای این منظور میتوان با یک خنک کاری ویژه ی مداوم یا گاه به گاه آنرا متعادل نگاه داشت. یک راه برای افزایش زمان استفاده از پس سوز این است که دیواره ی انتهایی موتور را دو جداره کنیم و یک انشعاب از هوای کمپرس شده را که از خنک کننده (دستگاهی است برای جذب گرمای هوا به میزان بالا) عبور کرده، از آن میگذرانیم که باعث کاهش پیشرفت حرارت دیواره ی موتور به میزان زیادی میشود و در نهایت این هوا به گازهای داخلی و داغ ملحق میشود. امروزه در بیشتر موتورهای توربوجت مختص جنگنده ها این فناوری وجود دارد. راه دیگر استفاده از گازهای خنک کننده ی قوی است که به میزان خیلی خیلی زیادی دمای موتور را کاهش میدهند، اما به هر حال این روش و روشهای دیگر معایب زیادی دارند و گذشته از معایب هزینه ی بسیار بالایی نیز دارند.

استارت موتورهای جت وتوربینی

برای روشن شدن یک موتور توربینی یقینا به یک آغازگر و راه انداز نیاز میباشد همانطور که برای روشن شدن یک موتور پیستونی نیاز است. ولی بین استارت یک موتور پیستونی و یک موتور توربینی تفاوت زیادی وجود دارد که به تعدادی از آنها اشاره میکنم:
یک تفاوت اساسی استارت موتورهای جت با استارت موتورهای پیستونی در این است که در موتورهای پیستونی بیشترین فشار و بار وارد بر روی استارت در لحظات اول است و آن به دلیل این است که در این موتورها کافی است میل لنگ با دور متوسطی بچرخد و پیستون ها بتوانند هوا را به اندازه کمپرس کنند و موتور با قدرت خود به کار ادامه دهد. و چنانچه استارت در این موتورها خراب شود میتوان آنرا به طرق دیگر روشن کرد . یعنی استارت در این موتورها ارزش حیاتی پایینی دارد چون میتوان با هل دادن یک ماشین آنرا روشن کرد.
و اما در موتورهای توربینی استارت از اهمیت بسیار بالایی برخوردار میباشد بطوریکه به هیچ وجه نمیتوان این موتورها را بدون داشتن یک استارت بکار گرفت. نکته ی مهم اینجاست که در موتورهای جت برخلاف موتورهای پیستونی بیشترین فشار و بار بر استارت قبل از قطع جرقه، زمانی است که بار وارد بر کمپرسور افزایش میابد. تفاوت اساسی دیگر که در ظاهر خود را نشان میدهد مدت زمان استارت خوردن است.در موتورهای پیستونی مدت زمان استاندارد استارت خوردن حدود 1.8 ثانیه است و در موتورهای سرحال این مقدار کمتر نیز هست که البته در مورد موتورهای قدیمی بحث نمیکنم. این درحالی است که مقدار زمان لازم برای استارت خوردن یک موتور توربینی معمولی با قدرت نسبی hp 120 حدود 100 ثانیه است. البته این زمان در هر موتوری متفاوت است ولی موتور هر چه قدر کوچکتر باشد به زمان کمتری احتیاج دارد و برعکس.


هدف از سیستم استارت شتاب دادن به موتوراست تا لحظه ای که توربین ها بتوانند قدرت کافی برای ادامه ی سیکل کاری موتور را تهیه کنند. به این نقطه از سرعت توربین ها "سرعت خودکفایی" میگویند. استارترها انواع مختلفی را دارند ولی همان طور که گفته شد هدف همه ی استارترها یکی است و آن رساندن دور موتور به سرعت خودکفایی و در موتورهای بدون توربین رساندن موتور به نقطه ی خودکفایی است. تهیه، انتخاب یا استفاده از استارت ها به عواملی بستگی دارد که در زیر به آنها اشاره کردم.
یکی زمان استارت است که در هواپیماهای جنگی بسیار مهم است و حتی پس از رسیدن موتور به دور هرزگرد درجه حرارت گازهای اگزوز بالا میرود ولی پس از اینکه دور به 40% Max رسید درجه حرارت گازهای اگزوز باید پایین بیاید، در غیر اینصورت خلبان باید موتور را خاموش کند تا اشکال آن برطرف گردد.علت بالا رفتن درجه حرارت اگزوز در حین استارت زدن عدم وجود هوای خنک کننده بخاطر کم بودن دور کمپرسور است. زمانی که استارت زده میشود شمع ها قبل از ورود سوخت به محفظه ی احتراق شروع به جرقه زدن میکنند. چون اگر مانند موتورهای پیستونی اول مخلوط هوا و سوخت وارد شود ممکن است به"Hot start" بینجامد.
Hot start استارتی است که در آن حرارت گازهای اگزوز از حد مجاز تجاوز میکند. چنانچه در زمان استارت زدن موتور روشن نشود، سوخت نسبتا زیادی (در موتورهای بزرگ) وارد محفظه ی احتراق میگردد. در اینحالت اگر دوباره استارت زده شود میتواند منجر به Hot start شود. برای جلوگیری از Hot start سیستمی کار گذاشته است که سیستم تخلیه یا Drain نامیده میشود و چنانچه موتور در استارتهای اولیه روشن نشود این سیستم سوخت داخل محفظه ی احتراق را تخلیه میکند.
عامل دیگر امکان دسترسی به نیروی محرکه ی استارت است. حتی موتورهای جت کوچک مقدار جریان الکتریسیته ی زیادی برای روشن شدن احتیاج دارند. به همین نسبت موتورهای بزرگتر نیرویی بیشتر برای روشن شدن احتیاج دارند. بعضی از استارتها از جهت نیروی محرکه خودکفا هستند. به این صورت که اکثر هواپیماهای جت انرژی لازمه استارت (دور بالای موتور) را از موتورهای جت کوچکتری که برق تولید میکنند میگیرند. یا ممکن است قدرت لازم برای استارت در یک هواپیمای چند موتوره از یک موتور که روشن است گرفته شود تا بقیه ی موتورها روشن شوند ، در چنین حالتی میتوان یکی از موتورهای هواپیما را با یکی از انواع استارتها روشن کرد سپس بقیه موتورها را با نیروی این موتور روشن کرد.
سومین عامل مواردی است از قبیل وزن مخصوص (نسبت وزن به گشتاور یا قدرت تولیدی)، سادگی، قابلیت اطمینان، قیمت و قابلیت تعمیر مجدد.
انواع استارت برای موتورهای توربینی عبارتند از:
1. استارت الکتریکی
2. استارت الکتریکی که بعد از استارت زدن آلترناتور شود
3. استارت فشنگی یا استارت با سوخت جامد
4. استارت بادی
5. استارت با احتراق هوا و سوخت
6. استارتر با موتور هیدرولیکی
7. استارت دستی یا هندلی
8. استارتر با سوخت یک پایه

چون پرداختن به توضیح تمام استارتها هم وقت گیر و هم حجیم است به اصلی ترین استارتها میپردازم و درمورد بقیه توضیح کوتاهی میدهم . چنانچه در مورد هر کدام سوال داشتید یا توضیح بیشتری خواستید آنرا در بخش نظرات بیان کنید.



تصویر یک استارت الکتریکی میکروجت


استارت الکتریکی
منبع این نوع استارت همان طور که از نامش پیداست موتور الکتریکی است. موتور الکتریکی که در این نوع موتورها استفاده میشود دارای RPM زیادی میباشد.RPM در حالت کلی به معنای تعداد دور در دقیقه میباشد و این یکایی است که برای نشان دادن دور موتورها چه پیستونی و چه توربینی به کار برده میشود. قدرت این استارت برای گرداندن کمپرسور صرف می شود تا کمپرسور هوا را به میزان لازم کمپرس کرده و به محفظه ی احتراق بفرستد. چنانچه در استارت یک موتور توربینی قدرت و سرعت کافی موجود نباشد RPM موتور در هنگام استارت کم خواهد بود و چون دور کمپرسور کم است آن مقدار که باید هوا را فشرده کند نمیکند لذا به سرعت خودکفایی نمیرسد و موتور روشن نمیشود (راه نمی افتد). برخلاف استارت موتورهای پیستونی که پس از روشن شدن موتور از مدار اتصال به فلایویل توسط اتومات استارت جدا میشود، در این نوع از استارت موتورهای توربینی استارت تا رساندن RPM موتور به اندازه ی RPM حالت خودکفایی کار میکند. این نوع استارت توان مصرفی بسیار بالایی دارد بطوریکه بر صفحات باطریها فشار بسیاری وارد میکند لذا از این استارت در موتورهای توربینی که تعداد توربین کمتری دارند استفاده میشود. از این استارت در بیشتر موتورهایی که کاربرد صنعتی دارند به عنوان بهترین استارت استفاده میشود.


شمایل نمای داخلی یک موتور که یک استارت الکتریکی بر روی آن با واسطه ی تغییر گشتاور نصب شده است.



استارت فشنگی بکار رفته در موتور t58


استارت فشنگی
این استارت یک استوانه فشنگی شکل است که درون آن ماده ی انفجاری که ازدیاد حجم و انبساط زیادی مینماید قرار میدهند. این استارت در قسمت قبل از کمپرسور نصب میشود، مانند آنچه در شکل زیر دیده میشود. تصویر زیر یک استارت فشنگی را بطور جدا از موتور نشان میدهد.


استارت بادیدر این نوع استارت هوای کمپرس شده در مخزن اکسیژن که معمولا مایع میباشد همزمان با سوخت به داخل محفظه ی احتراق تزریق و محترق شده که باعث حرکت سریع توربینها میشود و بعد از دور خودکفایی سیکل کاری توسط خود موتور انجام میشود. متاسفانه به دلیل استفاده و کاربرد غلط از نام " استارت بادی" از آن تعابیر مختلفی میشود مانند: استارت بادی استارتی است که هوا را با سرعت به توربینها ( یا کمپرسورها) میزند و آنها را به گردش در می آورد که با تحقیق مطلع شدم که این تعبیر از استارت بادی در واقع استارتی است به نام استارت هیدرولیکی و در کل اینکه به نام بعضی از آنها زیاد توجه نکنید، فقط طریقه ی کار و عملکرد آنها را خوب به خاطر بسپارید چون زمانی برایتان لازم میشود.


سایر استارتهااستارت با احتراق هوا و سوخت در موتورهایی بکار میرود که از سوخت های مخصوصی استفاده میکنند و در این نوع استارت موتور با اینحالت که در حال سیکل عادی است کار میکند و نمونه ی استفاده از این نوع استارت میکروجتی است که از سوخت گازی استفاده میکند. در استارت با موتور هیدرولیکی نیز هوای کمپرس شده توسط موتور هیدرولیکی به داخل محفظه ی احتراق راه میابد و در استارت هندلی نیز یک هندل با واسطه ی تغییر گشتاور به شفت اصلی متصل میشود و کمپرسور را به حرکت در می آورد. تصویر زیر یک استارتر هیدرولیکی خیلی کوچک و دست ساز را نشان میدهد که شامل یک موتور الکتریکی و یک توربین گریز از مرکز دقیقا مشابه کمپرسور گریز از مرکز میباشد و از توربین کمپرسور ساخته شده است که لوله ی خروجی آن به ورودی موتوری که قرار روشن شود وصل میشود.
 


استارت الکتریکی هم که کاربرد زیادی در بین موتورهای صنعتی دارد اینطور است که بعد از استارت به حالت آلترناتور تغییر میکند و با نیروی موتور برق تولید میکند.استارتهایی هم وجود دارند که با تزریق سوختی مخصوص مانند هیدروژن روشن میشوند و بعد از استارت از سوخت عادی استفاده میکنند.
استارتهایی که امروزه بیشتر مورد استفاده قرار میگیرند شامل استارتهای زمینی برای هواپیماها میباشند که به چند طریق عمل میکنند. یکدسته مانند استارتهای هیدرولیکی عمل می کنند و دسته ی دیگر شامل یک موتور جت کوچک تولید کننده ی برق میباشند که برق تولیدی آنها در استارت الکتریکی موتور اصلی استفاده میشود. در بعضی هواپیما ها نیز از یک موتور جت کوچک و مجزا استفاده میشود که خودش با استارت الکتریکی روشن شده و با نیروی شفت خود یا با برق تولیدی خود سایر موتورهای اصلی را روشن میکند. این هم تصویر نمای داخلی یک موتور است که متعلق به تولید کننده ی BMWاست و اگر دقت کنید میبینید که این موتور دارای استارت دستی (هندلی)است.




به خاطر بسپارید که کلید ساخت یک موتور جت در استارت آن است. اگر استارت موتور شما خوب نباشد یا درست عمل نکند شما به هیچ وجه قادر به روشن کردن موتورتان نخواهید بود و دلیل آن در این است که نیروی لازم برای سیکل کاری توسط استارت تامین میشود.

نازل موتورهای جت



همان طوری که میدانید بیشتر هواپیماهای مدرن مسافربری و جنگنده از موتورهای توربین گازی که جت نامیده میشوند به عنوان پیشران استفاده میکنند و بین این موتورهای توربین گازی تفاوت های زیادی وجود دارد ولی همه ی آنها قسمت های مشترکی دارند که تا کنون چند واحد اصلی آنها را در مطالب قبلی معرفی کردم . همه ی موتورهای توبین گازی یا همان جت یک نازل یا شیپوره دارند که با هدایت گازهای اگزوز به عقب، به جریان آزاد، تراست تولید میکنند. مکان قرار گرفتن نازل در موتورهای جت بعد از توربین قدرت و چنانچه موتور دارای پس سوز باشد بعد از آن قرار میگیرد و در حالت کلی در انتهای موتور جایی که گازهای اگزوز به هوا برخورد میکنند قرار دارد.


نازل یک دستگاه بسیار ساده است، تنها لوله ای است که شکل مخصوصی داده شده است و گازهای گرم درون آن جریان دارند.به هر حال ریاضیات است که نظر و استدلال دقیقی درباره ی عملکرد و شکل نازل میدهد تا بازده و عملکرد خوبی داشته باشد.
همانطوریکه در شکلهای زیر میبینید نازل ها دارای گوناگونی شکلی و اندازه میباشند که به کاربرد موتورها در هواپیماها بستگی دارند، مانند توربوجت و توبوپراپ. اغلب موتورها یک نازل ثابت همگرا (convergent) دارند که این مدل در سمت چپ شکل زیر دیده میشود و بیشتر با نام axisymmetric شناخته شده است. این نازل مانند آنهایی که در زیر توضیح داده شده فقط در جهت محور موتور تراست تولید میکند و به همین خاطر axisymmetric نامیده شده است. موتورهای توربوفن اغلب از نازل co-annular که در بالای شکل زیر سمت چپ دیده میشود استفاده میکنند. جریان درونی موتور و گازهای داغ از خروجی میانی و جریان هوای فن از خروجی حلقه مانند خارج میشود. مخلوط این دو جریان باعث افزایش تراست میشود و همچنین باعث کم صدایی و تولید صدای کمتری نسبت به نازل همگرا میشود.


توربوجت های پس سوز دار و توربوفن ها به شکلی از نازل همگرا-واگرا (CD) که تغییر پذیر باشد احتیاج دارند. نازل CD یا (convergent-divergent) در سمت چپ شکل نشان داده شده است.در این نازل جریان هوا ابتدا در باریکترین ناحیه که گلوگاه نامیده میشود به مرکز همگرا شده سپس در قسمت واگرا انبساط یافته و خارج میشود. شکل تغییر پذیر نازل باعث میشود که این نازل ها رفتار بیشتری نسبت به شکل ساده و ثابت نازل داشته باشند. اما شکل تغییر پذیر نازل زمانی کارآمد خواهد شد که در موتوری با جریان هوای عریض تر از موتوری با یک نازل ثابت معمولی استفاده شود. همچنین موتورهای راکتی از نازل برای سرعت دادن به گازهای خروجی و تولید تراست استفاده میکنند. موتورهای راکتی معمولا  یک نازل ثابت CD دارند که قسمت واگرای آن بزرگتر از نوعی است که در موتورهای جت استفاده میشود. در مطالب آینده  درباره ی موتورهای راکتی مطالب بیشتری در اختیارتان قرار خواهم داد.
همه ی نازل هایی که ما در باره ی آنها صحبت و بحث میکنید و دانشجویان رشته ی هواوفضا و سایر دانشجویانی که در این مورد واحد درسی میگذرانند و با آنها آشنا هستند، همه یک لوله ی گرد و یکپارچه هستند. اما اخیرا مهندسین نازلی را طراحی و آزمایش کردند که خروجی مستطیلی دارد. این خروجی اجازه میدهد که جریان اگزوز راحتتر منحرف شود یا به بیانی کنترل شود که در شکل بالا سمت چپ دیده میشود. تغییر مسیر تراست با نازل، هواپیما را مانوری تر میکند.این نازل ها که به نازلهای دو بعدی یا 2Dمعروفند علاوه بر تولید تراست در جهت محور موتور قادر به تغییر جهت تراست و قادر به تولید نیرویی در جهتی دیگر میباشند که به قسمت دم هواپیما (یا به جایی که نازل در آنجاست) وارد میشود. این نوع نازل که در شکل زیر نشان داده شده است قادر به تغییر جهت تراست به بالا و پایین میباشد. با تغییر جهت تراست به سمت بالا قسمت دم هواپیما به سمت پایین منحرف شده و در سرعت های مختلف اجازه ی تغییر جهت فوری در بعد vertical یا عموری را میدهد و تغییر جهت تراست به سمت پایین برعکس نوشته بالا عمل میکند. به علاوه دو نازل دوبعدی در یک هواپیما قادر به چرخش هواپیما (یکی از نازلها رو به بالا و دیگری رو به پایین) نسبت به محور طولی هواپیما میباشند.


بواسطه ی اینکه نازل گازهای داغ اگزوز را به هوای آزاد هدایت میکند ممکن است اثر متقابل سختی بین جریان اگزوز موتور و جریان هوای اطراف هواپیما وجود آید. بخصوص در هواپیماهای جنگنده در کنار خروجی نازل نیری کشنده یا Drag بزرگی روی میدهد. نوعی نازل در تصویر اول قسمت بالای تصویر سمت راست نشان داده شده است که متعلق به یک F-15 با نازل آزمایشی مانوری میباشد. این نازل سه بعدی است و قادر است در تمامی جهت ها بچرخد.به هر حال فقط تعدادی معدودی از هواپیماهایی که ساخته شدند از نازل های دو بعدی یا سه بعدی استفاده میکنند. شاید معروفترین اینها هواپیمای F-22 Raptor  آمریکایی و هواپیمای Su-37 روسی باشد که هر دو از نازل دوبعدی بخاطر افزایش قدرت مانوری استفاده میکنند. همانند طراحی ورودی موتورها، شکل و پیکربندی نازل خارجی اغلب متناسب با بدنه ی هواپیما طراحی میشود.

کمپرسور موتورهای جت

کمپرسور واحدی در موتور جت است که هوا را فشرده میکند و آنرا به محفظه ی احتراق میفرستد.اکنون قسمت کمپرسور را به طور کامل شرح میدهم.
در حالت کلی سه نوع کمپرسور در موتورهای جت استفاده میشود :
1. کمپرسور گریز از مرکز(Centrifugal)
2. کمپرسور محوری(Axial)
3. کمپرسور ترکیبی محوری-گریز از مرکز


کمپرسور گریز از مرکزدر این نوع  کمپرسور هوا از مقابل مکیده  شده  و به شعاع  بزرگتری  درجهت عمود بر شفت(محور اصلی) رانده میشود.یک کمپرسور گریز از مرکز در شکل زیر نشان داده شده است.
این کمپرسور بصورت یک مرحله ای و دومرحله ای در موتورها استفاده میشود ودر موتور های استاندارد بعد از این کمپرسور یک قسمت قرار میگیرد که دیفیوژر نام دارد و وظیفه ی آن  کاستن سرعت هوا و در بعضی منظم کردن حرکت هوا میباشد.معمولا در تمام کمپرسور هایی که دارای دیفیوژر میباشند دو دیفیوژر قرار میگیرد که یکی در جهت گریز از مرکز و بعدی در جهت افقی قرار میگیرد.چنانچه دارای  یک دیفیوژر باشد آن دیفیوژرL شکل خواهد بود(دید از نمای بغل) و طوری روی موتور قرار میگیرد که نیمساز زاویه داخلی آن با شفت زاویه ی ˚45 بسازد.مزایای استفاده از این کمپرسور وزن سبک ؛سادگی وقیمت کم میباشد.

طریقه ی اتصال این نوع کمپرسور در شکل زیر به وضوح مشاهده میشود.البته نوع اتصال دیگری نیز وجود دارد بطوریکه دو کمپرسور از سمت پشت (قسمت بدون پره) به یکدیگر متصل هستند و پرهای آندو مخالف یکدیگر است.

 

کمپرسور محوری این نوع کمپرسور از آن جهت که هوا را در جهت محوری فشرده میکند کمپرسور محوری نامیده میشود.کمپرسور محوری در موتورهایی با ؛یک شفت ؛ دو شفت و سه شفت بکار میرود.این بدان معناست که توربین های این نوع کمپرسور ممکن است حرکت جداگانه از یکدیگر داشته باشند و توربینهایی که این کمپرسورها را به حرکت درمی آورند هم از یکدیگر جدا هستند ولی در جهت مخالف یکدیگر گردش نمیکنند(تا جایی که من اطلاع دارم) و دلیلی هم برای گردش مخالف وجود ندارد. در موتورهای چند شفته (1,2,3) درونی ترین شفت مربوط  به کمپرسور فشار ضعیف  بوده و به همین ترتیب شفت میانی  یا  بیرونی (در موتور دو شفته) دارای کمپرس  فشار متوسط (در موتور سه شفته) ودارای کمپرس فشار قوی (در موتور دو شفته) میباشد.بیرونی ترین  شفت هم در موتور سه شفته دارای قویترین فشار میباشد.



معمولا در اکثراین کمپرسورها برای هر چرخ توربین یک کنترل کننده(یا هدایت کننده) هوا که مانند یک چرخ توربین است قرار میدهند و معمولا هم این هدایت کننده ها متحرک میباشد.در این مورد بعدا توضیحاتی به همراه عکس  در صفحه قرار میدهم.
 مطلب دیگری که در مورد کمپرسور محوری است این است که در این نوع کمپرسور تعداد مراحل توربین زیادی قرار میدهند(نسبت به قدرت) و در صورتی که دارای هدایت کننده ی هوا نباشد با پیش رفتن به مرکز موتور از زاویه ورودی و خروجی نسبت به محور توربین کاسته میشود.از مزایای این کمپرسور قدرت بسیار بالایی است که این کمپرسور دارا میباشد ودر تمام موتورهای جت پر قدرت استفاده میشود.از معایب این کمپرسور میتوان به سنگینی و حساسیت زیاد به عوامل مخرب بیرونی و قیمت بالا برای ساختن آن اشاره کرد.البته از این نوع کمپرسور در موتورهای توربینی کوچک استفاده نمیشود.

کمپرسور ترکیبی(Axial-Centrifugal)

کمپرسور گریز از مرکز در موتورهای جت قدیمی استفاده میشد.بازده کمپرسور گریز از مرکز یک مرحله ای نسبتا کم است اما کمپرسور گریز از مرکز چند مرحله ای بهتر از یک مرحله ای آن است. ولی با کمپرسور محوری برابری نمیکند.بعضی از موتورهای پیشرفته ی توربوپراپ و توربوشفت نتیجه ی مطلوبی از کاربرد ترکیبی این دو نوع  کمپرسور کسب کردند مانند PT6 Pratt و Whitney ازکانادا که امروزه خیلی محبوب بازار است.در زیر موتور PT6 Pratt به شکل برش خورده نشان داده شده است.


در اینجا قسمت کمپرسور را به پایان میرسانم و در مطلب بعدی در باره ی محفظه ی احتراق توضیح خواهم نوشت.در صورت داشتن هر گونه سوال در مورد کمپرسور و سایر قسمت های موتورهای توربینی وجت من در خدمت شما هستم .

مجرای ورود (inlet)

همه ی موتورهای جت یک قسمت ورودی برای آوردن هوای آزاد به داخل موتور دارند که ما آنرا "مجرای ورود" می نامیم. مجرای ورود قبل از کمپرسور قرار میگیرد و تاثیر به سزایی در میزان تراست خالص موتور دارد. همانطور که در شکل زیر نشان داده شده مجرای ورودی در شکلها و اندازه های مختلفی وجود دارد که هر کدام ویژگی خاصی با توجه به موتور و سرعت هواپیما دارند.


ورودی SUBSONIC
برای هواپیماهایی که نمی توانند از سرعت صوت فراتر بروند مانند هواپیماهای مسافربری بزرگ، یک ورودی کوتاه، ساده و مستقیم تقریبا خوب کار میکند. ظاهر این نوع ورودی از قسمت بیرونی تا قسمت داخلی همراه با ضخامتی منحنی شکل مسطح میباشد و قسمت هایی در جلویی ترین بخش ورودی که دو منحنی داخلی و خارجی به یکدیگر متصل می شوند "لب یا لبه" ورودی نامیده میشوند. در یک هواپیمای ساب سونیک از ورودی با لبه ای نسبتا کلفت استفاده میشود.


ورودی SUPERSONIC
مجرای ورود برای هواپیماهای سوپرسونیک از لبه ی نازک و تیزی برخوردار می باشد. این لبه بخاطر کاهش اتلاف، کارایی که از موج های ضربه ای (shock wave) در هنگام پرواز سوپرسونیک حاصل میشود، تیز شده اند.برای یک هواپیمای سوپرسونیک ، مجرای ورودی باید سرعت جریانهای هوا را قبل از ورود هوا به کمپرسور تا حد سرعت ساب سونیک کاهش دهد. بعضی از ورودی های سوپرسونیک مانند شکل بالا تصویر پایینی ، از یک مخروط مرکزی برای آوردن جریان هوا به سرعت ساب سونیک (shock down) استفاده میکنند.دیگر ورودی ها مانند آنچه در شکل بالا، تصویر میانی نشان داده شده از صفحه های مسطح لولایی برای ایجاد، متراکم سازی ارتعاشی که با داشتن شکل هندسی مستطیلی مقطع عرضی، نتیجه میشود، استفاده میکنند. این شکل تغییر پذیر مجرای ورودی در هواپیماهای جنگنده ی F-14 , F-15 استفاده شده است . بیشتر ورودی های دیگر در انواع شکلها به دلایل گوناگونی در بعضی هواپیماها مورد استفاده قرار میگیرد. ورودی هواپیمای SR-71 Blackbird به منظور گشت زنی در سرعتهای بالا به طور ویژه طراحی شده است. در مورد موتور این هواپیما مطلبی تهیه کردم که در ماه آینده در اختیارتان قرار خواهم داد.

ورودی Hypersonic
در ورودی هواپیماهای هایپرسونیک امروزی نهایت طراحی به کار گرفته شده است. برای هواپیماهای رمجت مجرای ورودی باید سرعت بالای جریان هوا در سوزاننده های رمجت به شرایط سرعت ساب سونیک بیاورد. با دمای ایستایی بالا در این سرعت ، شکل تغییر پذیر ورودی نمیتواند انتخابی برای یک طراح ورودی باشد، برای اینکه ممکن است جریان هوا از میان لولاها سوراخ باز کند. برای هواپیماهای اسکرمجت گرمای محیط حتی خیلی بیشتر است چون سرعت پرواز آن بیشتر از رمجت است. ورودیهای اسکرمجت با بدنه ی هواپیما خیلی کامل شده و مجتمع هستند.در X-43A ورودی شامل تمام سطح زیرین از لبه ی بالایی قسمت جلوی این هواپیما میشود. سرعت جریان خروجی از مجرای ورود یک اسکرمجت باید به اندازه ی سوپرسونیک باشد. به عبارت ساده تر جریان هوای هایپرسونیک که از ورودی یک اسکرمجت وارد میشود پس از گذشتن از مجرای ورودی باید به سرعت سوپرسونیک برسد.
کارایی مجرای ورود
یک ورودی هوا باید در کل زمان پرواز یک هواپیما به خوبی کنترل شود. در سرعت های خیلی پایین هواپیما یا زمان نشستن هواپیما بر روی باند پرواز هوای آزاد توسط کمپرسور به داخل موتور کشیده میشود. مجرای ورود در آمریکا و تابعین inlet نامیده شده و در انگلستان از واژه ی intake برای مجرای ورود استفاده میشود که توضیح دقیق تری درباره ی کارکرد مجرای ورود در سرعت پایین میدهد.
یک ورودی خوب هوا در سرعت های بالا اجازه ی مانور با زاویه ی حمله ی بیشتر و یک ور شدن بدون منقطع کردن جریان به کمپرسور را میدهد. چون مجرای ورود در کل کارکرد هواپیما مهم بوده و تاثیر دارد معمولا توسط شرکتهای سازنده ی بدنه طراحی و تست میشود نه شرکتهای سازنده ی موتور. اما چون عملکرد مجرای ورود در بازده و اجرای موتور نقش موثری دارد، همه ی سازندگان موتور متخصصان آیرودینامیک مجرای ورود را نیز به کار میگیرند.
دوستان عزیز منتظر نظرات شما هستم.